Environmental and Social Management Plan (ESMP)

Rehabilitation of Five Wards and Other Selected Areas
Victoria Hospital

Saint Lucia Disaster Vulnerability Reduction Project (DVRP)
World Bank Project P127226
Table of Contents

Chapter 1. Introduction and Background ... 3

Chapter 2. Project Description .. 4
 2.1 Project Scope and Context ... 4
 2.2 Project Details ... 7

Chapter 3. The Legal and Administrative Framework ... 11
 3.1 National Law .. 11
 3.2 World Bank Social and Environmental Safeguards .. 12
 3.3 International standards ... 12

Chapter 4. Potential Environmental and Social Impacts .. 14
 4.1 Design and Construction ... 14
 4.3 Decommissioning ... 15

Chapter 5. Mitigation Measures ... 16

Chapter 6. Project Management and Institutional Arrangements .. 22
 6.1 ESMP Implementation Responsibilities .. 22
 6.2 Contractor Responsibilities ... 22
 6.3 Supervision, Monitoring and Reporting. .. 23

Chapter 7. Stakeholder Engagement ... 25
 7.1 Disclosure of ESMP .. 25
 7.2 Community Engagement ... 25
 7.3 Grievance and Redress Mechanism .. 26

Annex 1. Screening Tool for E&S Risks .. 28

Annex 2. Infection and Prevention Control Protocol (IPCP) ... 30

Annex 4. Accident/Incident Reporting Form .. 38
Chapter 1. Introduction and Background

The Government of Saint Lucia (GoSL) is implementing the Disaster Vulnerability Reduction Project (DVRP) with funding from the World Bank Group (WBG). The DVRP aims to measurably reduce vulnerability to natural hazards and climate change impacts in Saint Lucia through several activities related to risk reduction and adaptation, technical assistance, financing for climate adaptation, and the Contingent Emergency Response Component (CERC). The CERC is a provisional component to finance emergency recovery and reconstruction subprojects under an agreed action plan of activities. In response to the COVID-19 pandemic, the CERC was triggered and efforts are underway in Saint Lucia to acquire emergency equipment and supplies, and to enhance health emergency and disaster response efforts through small civil works such as rehabilitation of hospitals and clinics.

The environmental and social risks for this activity (proposed works at Victoria Hospital) are addressed under the Environmental Assessment / Environmental Management Framework (EA/EMF) for the DVRP ¹ as amended to include additional safety measures for the pandemic under the Contingency Emergency Response Component (CERC).² Together these form the Environmental and Social Management Framework (ESMF) for all works under the CERC.

At this time the GoSL is building capacity for the pandemic through the retrofitting and rehabilitation of the selected wards and areas at the Victoria Hospital. The areas identified for rehabilitation at the existing hospital site are Ward 5 and Nurses Station, Gynecology Ward, Wards 8 and 9, Cuban Eye Clinic and Doctor’s Lounge, Dietician Office and Pediatric Ward. The scope also includes some external works at the site. The work involves ventilation, partitioning, plumbing, electrical, concrete, and carpentry works. Based on the screening conducted for this project (see Annex 1), an Environmental and Social Management Plan (ESMP) is required to identify and appropriately manage environmental and social risk. This ESMP provides the requirements that the implementing agencies (Local Government Authorities, and Healthcare Facilities Management) will follow to ensure the protection of healthcare workers, waste handlers, and the community from environmental and social risks associated with the retrofitting activity. The risks are associated with waste management, infection control, health and safety, and timely and clear public information. This ESMP will ensure that the retrofitting is done in compliance with national and regional environmental regulations, and consistent with international best practices and World Bank safeguards policies.

This ESMP will be disclosed on the GoSL website, and the records of the disclosure will be documented and recorded.

² The Environmental and Social Management Framework (ESMF) Addendum can be found at the following website address:
Chapter 2. Project Description

This section focuses on the existing conditions and specific works related to the Victoria Hospital rehabilitation. General information on environmental and social baseline conditions relevant to the Saint Lucia context is provided in the Project EMF document, and is not repeated here.

2.1 Project Scope and Context

Background

Victoria Hospital was the main public healthcare facility and main referral hospital in Saint Lucia. It was originally constructed in 1887 and is located in the capital city of Castries, on the south side of the harbor (Figure 1). It was the main local trauma facility and had an emergency room with 6 acute care beds and one resuscitation room. The facility had a capacity of 162 beds and more than 500 staff, including physicians and surgeons specializing in all areas of medicine. In 1992, a major addition to the original 150-year old facility was built, as a new wing for the Obstetrical Department.

The facility offered rotating outpatient clinics during the morning hours and a Renal Dialysis Unit that was open daily. Outpatient clinics included Medical, Surgical, Pediatrics, Obstetrics, Oncology, Ear/Nose/Throat, Ophthalmology, Orthopedic, Diabetes/Hypertension, Cardiology, and Nephrology, offered once, or twice per week.

The Hospital also offered diagnostic services for the public, and its pharmacy also filled prescriptions for patients from outside the Hospital, mainly filling other public sector prescriptions or specialized prescriptions from the private sector.

The Hospital campus also hosted inpatient Obstetrics, Pediatrics, Male and Female General Medical, Chest/Tuberculosis Wing, Gynecology, Maternity and Neonatal Unit, Male and Female Surgical Wards as well as a free Eye Clinic run by Cuban doctors through an arrangement with the Ministry of Health and Wellness and a Sexually Transmitted Infections (STI) Clinic, managed by the National AIDS Program.

In March 2020, services at Victoria Hospital began transitioning to the new Owen King European Union (OKEU) Hospital which is intended to serve as the main hospital for Saint Lucia going forward. The rehabilitated wards of Victoria Hospital are, at first instance, intended to serve as isolation units to meet the needs of the current COVID-19 pandemic.
Figure 1. Castries area and location of Victoria Hospital
Figure 2. Victoria Hospital complex

The Hospital complex is bordered to the north by the Castries Harbor, with the cargo port to the northeast (Figure 2). The complex is ringed by the Millennium Highway to the west and Hospital Road to the south and east.

Figures 3,4. Exterior of Victoria Hospital in 1906 (left) and at present (right)
2.2 Project Details

Project Design

Five wards will be rehabilitated at Victoria Hospital: Ward 5, Ward 8 and 9, and the Gynecology Ward and Pediatric Ward. Figure 6 shows the current layout of three of the wards to be rehabilitated. Ward 5 will contain 8 beds, Ward 9 will contain 12 beds, and the Gynecology Ward will contain 11 beds. They are intended to serve as isolation units if needed in case of COVID-19 related cases, as shown in the updated ward layouts in Figure 7. In addition, the Cuban Eye Clinic will be relocated to Castries Wellness Centre, and the Pediatric Ward and Dietitian areas will be reconfigured for delivery of improved health care.
Demolition and fitting of new equipment

The facility operated as a Hospital from 1887 and has gone through many renovations and retrofitting in order to meet health care needs over the years. The facility contained all the amenities that ensured it operated within hospital standards for Saint Lucia.

No clearing of land is needed as the works will take place entirely within the existing hospital facility. The Victoria Hospital is generally set up using a nightingale configuration. Therefore, the demolition works will be minimal. Existing concrete and timber partitions will be demolished and removed from the premises to accommodate the new designs.
Figure 7a, b, c. Design of rehabilitated and retrofitted wards.

Plumbing will include standard p-traps and roof vents to prevent migration of odor or vapors. The floor is being raised up to 6 inches to accommodate drain pipes. No floor drains are being installed, and the new rooms will have individual sinks and bathrooms.

The facility contains a three-chamber septic system for wastewater disposal and follows the guidelines of the Solid Waste Management Authority for disposal of infectious materials. The wastewater will discharge to the existing septic tank and soak away system, which is reportedly in good condition. The septic tank and soak away will be inspected to ensure that the operation is adequate and there is no overflow or leakage. Some of the grey water of the facility is being drained into the open canals surrounding the facility and a disinfecting septic tank containing a chlorine port would be necessary to deal with these waters. However, a storage area to house
both solid and infectious waste will be required. There is a container on the site which will be converted to a storage area to suit those needs.

The creation of the rooms with the open ward will require artificial ventilations in some areas. Windows will be able to be opened for ventilation when needed due to power outage or other contingency, and to help prevent mold. Air conditioning will be run through 4-inch ventilation ducts to the rooms. Extractor fans will be set to run permanently in the bedrooms, to provide negative pressure and ensure that air flow is away from potentially infected areas. Bathrooms will also be fitted with extractor fans.

All exhaust will be routed to the building exteriors. The location of the exhaust will be checked to ensure that it is not near people, animals, or the intake vent from the hospital or other buildings. A HEPA filter may be installed at the exhaust point; however, alternative technologies are being evaluated (e.g. UV-C germicidal light).

The grounds of Victoria Hospital are gated and has a controlled entrance managed by the security of the facility supported by an external security firm. Workers for the rehabilitation will enter and leave the grounds from this controlled entry to minimize exposure to infectious conditions.

Wastes are currently stored and managed through an existing agreement with the Solid Waste Management Authority. All infectious waste is handled by the Authority and is eventually disposed of at the local garbage management facility.

Operation and Decommissioning

The facility will be operated to provide additional capacity for COVID-19 patients, particularly for isolation units; and, it may serve other needs of the national healthcare system. Most surgeries and other functions are in the process of transitioning to the new OKEU Hospital, so any effect on capacity during rehabilitation would be minimal.

In the future, Victoria Hospital will continue to be used for needs of the national healthcare system. The rehabilitated wards may serve other functions in the future.
Chapter 3. The Legal and Administrative Framework

3.1 National Law

Saint Lucia has promulgated numerous laws, regulations, and policies that are relevant to small civil works. For a thorough discussion of these, please refer to the EA/EMF document, which also describes the various ministries and agencies and their respective roles.

Relative to health facilities, the Solid Waste Management Act (2004) provides for the management of waste in conformance with best environmental practices. The Saint Lucia Solid Waste Management Authority (SLSWMA) has developed draft regulations for medical waste management (Biomedical Waste Transportation, Treatment, and Disposal Regulations, Statutory Instrument, 2008).

In 2006, a Biomedical Waste Management Plan was developed for Saint Lucia and the SLSWMA.\(^\text{3}\) It covers waste designation, segregation, labeling, storage, and contingency responses; transportation including manifesting, vehicle requirements, scheduling, and driver training; treatment technologies including autoclave and incineration; occupational health and safety guidelines; and provides cost estimates to implement the Plan’s proposed actions. Some of the Plan’s recommendations are included in this ESMP as annexes.

The 2006 Plan is not considered a formalized plan for healthcare waste management in Saint Lucia. However, its policies have been adopted and are being followed at the health facilities. Healthcare workers in Saint Lucia are required to follow guidelines for occupational safety and for best practice in medical waste management. Waste generators are required to properly segregate waste, so that unnecessary treatment is avoided. Continuous training is required for staff.

Specialized 240-liter containers are provided by SLSWMA to biomedical waste generators, including the major hospitals, polyclinics, and health centres. Biomedical waste containers are collected from generators once weekly, in a specialized vehicle (with the capacity to hold 20 containers) operated by a private contractor with two specialized vehicles which are stainless steel lined and sealed, with equipment to properly secure bins. About 20 bins per week of medical waste are collected from hospitals, health centres and other biomedical waste generators around the island. The waste is transported to an autoclave facility located at Deglos, where biomedical waste is stored in a 70-L refrigerated storage container and treated twice weekly with an autoclave. Since it entered operation several years ago, the autoclave has failed once due to a faulty valve, and this was repaired within a week. In the event of autoclave failure, the

refrigerated storage facility at the same site has more than three (3) weeks storage capacity at
current generation rates. In the event of prolonged system failure, the SLSWMA could revert to
deep burial of biomedical waste at the two (2) waste disposal sites (Vieux Fort and Deglos) in
Saint Lucia.

3.2 World Bank Social and Environmental Safeguards

Safeguard Policies

The WBG has developed Safeguards Policies that guide the development of projects including
the DVRP. Most relevant to the Victoria Hospital rehabilitation is Operational Policy 4.01(OP4.01),
which requires environmental and social assessment of any proposed project. Accordingly, the
ESMF was prepared for the DVRP as a general guidance document, and currently this ESMP has
been prepared for the specific activity of clinic retrofitting and rehabilitation.

Several additional safeguards policies cover aspects such as land acquisition, public disclosure,
natural habitat, and antiquities protection, among others. For a thorough discussion of these,
please refer to the ESMF document or the WBG website.4

EHS Guidelines

Environmental, Health and Safety guidelines have also been prepared by the WBG. There are
general guidelines that cover most activities related to construction projects for new facilities.
Some parts of these general guidelines are applicable to the retrofitting activity, particularly
such aspects as traffic safety, dust and noise control, worker health and safety, and control of
runoff from work sites.

Of relevance to the hospital rehabilitation are the sector-specific WBG guidelines for Healthcare
Facilities, which cover waste minimization, waste segregation, handling and storage of wastes
on site, transport to external facilities, and options for treatment and disposal. For more
information, refer to the EHS Guidelines on the WBG website under the category of Healthcare
Facilities.5

3.3 International standards

The Caribbean Public Health Agency (CARPHA), the Pan American Health Organization (PAHO),
the World Health Organization (WHO), and the Centers for Disease Control and Prevention
(CDC) have issued several guidance documents specific to the health sector, including the

5https://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/sustainability-at-ifc/policies-standards/ehs-guidelines
activities that will fall under the CERC. In addition there are protocols dealing with potential exposure to infectious agents, such as COVID-19. Particularly relevant are the following:

- Standard Operating Procedures (SOPs) for autoclaves, incinerators, air handling and/or filtration systems. The SOPs for the equipment along with the necessary training should be supplied as part of its procurement.
- Guidance on Management of Solid Health-care Waste at Primary Healthcare Centres\(^6\)
- Interim Infection Prevention and Control Recommendations for Patients with Suspected or Confirmed Coronavirus Disease 2019 (COVID-19) in Healthcare Settings\(^7\)
- WBG guidelines for Healthcare Facilities\(^8\)
- Smart Hospital Project: Retrofit Measures for COVID-19 June 2020

For isolation wards, the following design and operation information is pertinent:

- Severe Acute Respiratory Infections (SARI) Manual \(^9\)

\(^6\) http://www.who.int/water_sanitation_health/publications/manhcwm.pdf

\(^8\) https://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/sustainability-at-ifc/policies-standards/ehs-guidelines

Chapter 4. Potential Environmental and Social Impacts

Notwithstanding the numerous positive benefits, there is also a risk of negative social and environmental impacts if certain activities are not appropriately managed. The sections below describe those potential negative impacts from the perspective of retrofitting Victoria Hospital. Anticipated risks and their mitigation are discussed in this chapter and in Chapter 5.

4.1 Design and Construction

The hospital rehabilitation works have potential issues that must be addressed, that are typical for any kind of small activity involving physical works. There are also some risks that are inherent to its design and functions, including ventilation, wastewater, treatment of demolition debris, and medical waste.

The wards must have proper treatment of liquid waste. The toilets and sinks are connected to the existing septic tank and soak away (leach field) which must be checked during the design of the rehabilitation works. Disinfection of the septic tank by adding chlorine tablets is also desirable, so an access port can be added to facilitate this. Floor drains in examination rooms may empty to open canals or ditches outside the building, which means that wash water could cause exposure outside the facility – therefore, a new septic system and soak away may need to be added to handle the floor drain wash water.

There are no new lands that must be acquired or used, as the entire project works will take place on the existing premises of Victoria Hospital. If for any reason it is necessary to rent or lease some additional land or a building from a private holder, a contract will be prepared and signed by both parties at market rates for the land and any building.

Once the rehabilitation works begin, to avoid impacts, there must be attention paid to preventative measures such as controlling runoff, having safe areas for waste storage bins or receptacle storages, and placing debris in controlled areas for removal and disposal in designated landfills. Construction waste and debris will need to be disposed of properly as will any hazardous material such as asbestos, mercury, chemicals which may also be used, as well as items such as paint, adhesives or glue, plastics, and other solid waste or debris.

The delivery and placement of associated equipment can also impact the neighbouring areas through increased traffic, dust and noise, stormwater runoff from disturbed areas or concrete mixing areas, inadequate debris disposal, and poor sanitary facilities on the work site. There are also occupational health and safety risks typically associated with small civil works such as those arising from not using safety equipment, or workers not properly managing heavy equipment.

If any medical waste is encountered during the demolition, it must be managed according to proper procedures, as outlined in Chapter 5. If the facility has already begun to receive COVID-19 patients, then the protocols in this ESMP should be followed.
An autoclave or incinerator will not be built for waste disposal. The Department of Health (DOH) will continue to use the procedures developed for the purposes of waste disposal which are consistent with the Waste Management Act of 2004.

4.2 Operation

Once operational, the facility will have biomedical waste which will require proper treatment and disposal. These will include sharps, infectious wastes, chemical or pharmaceutical waste, as well as non-hazardous or general waste.

The health and safety of healthcare workers could be affected by poor waste management practices as well as by hygiene conditions, isolation and storage procedures for bio-infectious, radiologic or genotoxic waste. Air conditioners and filtration systems must be operated and maintained properly, and the filters treated as biomedical waste.

Operation of an autoclave or incinerator is also a source of risk if not properly done. Air pollution from particulate matter, or runoff of ash or waste to nearby drains or canals, could occur if not properly controlled. Thermal injuries, or chemical burns could also arise in the context of disinfection, sterilization or waste treatment activities.

Biomedical waste generated from the operation of the facility will be handled as described under Section 3.1 above, in keeping with National laws.

Liquid waste disposal systems (septic tanks and soak ways) must be checked periodically and maintained to prevent overflow or leakage, otherwise there is a risk they may overflow, leak, or otherwise malfunction.

4.3 Decommissioning

Once the hospital wards are no longer being used for the COVID-19 outbreak, then there still may be environmental and social risk or impacts remaining on the site. The area must be adequately sanitized, waste materials removed and disposed of, and supplies and equipment must be safely stored or transported elsewhere.
Chapter 5. Mitigation Measures

This section of the ESMP provides the mitigation measures to address each of the risks identified in the previous chapter. The mitigation measures include the following:

1. Management of environmental and social issues related to the location and operation of the Clinic.
2. Disposal of construction waste and debris; control of noise, dust and traffic; control of runoff; restrictions of public or visitor access or entry; and occupational health and safety for workers.
3. Procedures for bio-medical waste management on site, and transfer of liquid and solid wastes to autoclaves, incineration sites, waste pits, landfills, and/or other disposal locations.
4. Maintenance and care standards for biomedical waste treatment equipment, i.e. autoclave and incinerator, air handling and filtration equipment, wastewater collection and disposal systems.
5. Standard Operating Procedures (SOP) and engineering options for infection control such as quarantine and voluntary self-isolation procedures, contact and airborne precautions, cleaning and disinfection procedures, monitoring and managing exposed healthcare personnel.
6. Training on occupational health and safety (equipment operations, Personal Protective Equipment) for public health staff, visitors and workers.
7. Reporting requirements within and between the health facility and the Ministry of Health and Wellness.
8. Public information and outreach to sensitize the public on infection control precautions within the location(s) of the isolation facility through posters, communications via the mass media, and other means using messages designed with WHO messaging advice and tools.

The ESHS risks at each of the stages or phases of small civil works projects where COVID19 may be of concern are described below. The subsequent matrix describes the associated mitigation measures. Additional information is provided in Annex 3 of this ESMP.

Phase 1 – Design and Construction

The selection of the Victoria Hospital site for use as an isolation ward must take into account community safety concerns. Once works begin, to avoid impacts, attention must be paid to preventative measures such as controlling runoff, having safe areas for waste storage bins or receptacle storages, and adequate facilities for the collection, storage and eventual treatment of sanitary wastewater. Standard measures to avoid impacts from traffic, dust, and noise must be observed, as well as those dealing with occupational health and safety for site workers. In addition, construction waste and debris will need to be disposed of properly.
Table 1. Design and Preconstruction Mitigation Measures

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Potential Impacts</th>
<th>Proposed Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site selection for Isolation ward</td>
<td>There may be anxiety and complaints from those living in or using nearby areas about potential impacts of COVID -19.</td>
<td>• Conduct community outreach once plans have been finalized. Follow the level of outbreak guidance on Risk Communication and Community Engagement (RCCE) readiness and response to the 2019 novel coronavirus (2019-nCoV) published by the WHO.</td>
</tr>
<tr>
<td>Adequate ventilation, filtration, and wastewater disposal from the facility</td>
<td>Emission of infected particulates, aerosols, or liquids into the environment.</td>
<td>• Inspect septic system and soak away, as well as pipes and sewer drains, and include upgrading or repair as needed. • Consider pre-treatment of liquid waste before it leaves hospital grounds by adding port for chlorine tablets or other disinfection measures. • Inspect areas where vents may exhaust outdoors, and ensure they are not close to people, animals, intake vents for the hospital, or other buildings. • Consider vertical exhaust vents, HEPA filters, UVGI or other measures of disinfection of exhaust as necessary and appropriate, as per WHO Manual on Severe Acute Respiratory Infections (SARI) facilities.</td>
</tr>
<tr>
<td>Hazardous materials handling, storage, use and transportation</td>
<td>The risk of accidental discharge of hazardous products, leakage of hydrocarbons, oils or grease from construction machinery.</td>
<td>• Avoid the storage of hazardous substances around water bodies. • Ensure that storage containers of hazardous substances are always in good condition and tightly closed. • Ensure that storage facilities are provided impervious surfaces and bunds to control spill in case of accidental spillage. • Develop spill response plan as part of the construction ESMP. • Secondary containment for fuels to avoid spill contamination and inspection during operation. • Some training in fuel and waste handling should be part of the orientation for workers. • Maintain the Material Safety Data Sheets (MSDS) Sheets for hazardous materials onsite. Use of effective methods for the safe removal of mold based on International standards. - Use of antibacterial paints which will prevent the buildup of mold and are easy to clean and maintain. (The Smart Hospital project focused on the use of these types of paints). Note – these paints should not be placed over existing paint that has already been contaminated. It should be scrapped through the use of proper safe techniques and then repainted.</td>
</tr>
<tr>
<td>Aspect</td>
<td>Potential Impacts</td>
<td>Proposed Mitigation</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Construction Wastes and Debris | Improper storage and/or disposal of materials; Dispersion of materials in nearby canals, ditches, rivers, streets and adjacent properties | • The contractor shall handle construction materials and waste in accordance with approved procedures
• The contractor should only dispose of materials in areas approved by the relevant authority
• The contractor shall contain excavated materials in the vicinity of the worksite within berms to prevent dispersion and sedimentation of drains, creeks, streets and adjacent properties
• In case of accidental waste dispersion, the environmental authority shall be informed, and restoration measures shall be applied. |
| Dust and noise from construction activity | Impaired Air quality due to emissions from vehicles and dust generated; Respiratory impacts on site workers, nearby residents and pedestrians; Noise generation from the use of machines and construction equipment with its impact on workers and neighborhoods | • Dust suppression methods such as wetting materials or slowing work should be employed as needed to avoid visible dust
• Gas masks / respirators when working in closed areas such as access manholes, etc. (according to approved procedures)
• Document requirements and standards in the Contract
• Hearing protection for working around machinery where the noise exceeds 85 dB (according to approved procedures)
• The location of noisy machinery (including generators) can be positioned away from sensitive sites such as schools or residential areas
• Maintain vehicles and Contractors machinery according to maintenance requirements |
| Community Health and Safety | Movement of heavy trucks and equipment may cause traffic problems and create unsafe situations for local motorists; Unauthorized entry of local persons may place them in jeopardy if they are on work locations | • Ensure that a Traffic Management Plan is place where this might be an issue
• Ensure that sites are properly barricaded during construction and temporary pedestrian walkways are provided when required
• Restrict hospital staff and public from going to the construction site during and outside working hours by placing posters, reflective tapes and erecting barriers
• Contractor must develop a Community Health and Safety Plan (CHSP) |
| Worker health and safety | Accidents to workers on the construction site | • Train workers on prevention of accidents and managing incidents
• Workers must wear protective gear
• Provide first aid kit and emergency plan for accidents or incidents
• Proper supervision of the construction workforce
- The installation of seamless flooring on the wards and in main areas. This will prevent slips and falls and will also be easy to clean. |
<p>| Worker health and Safety – COVID-19 Risks | Exposure and spread of infection | • For COVID-19 management on the construction site, follow the infection control protocol in this ESMP |</p>
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Potential Impacts</th>
<th>Proposed Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water pollution from runoff or infiltration of wastes on different sites where facilities or equipment may be deployed</td>
<td>Clogging of ditches or drains with sediment or silt; Fouling of waterways with pollutants of any kind</td>
<td>• Prepare the ground where any equipment or waste will be placed by compacting, lining, coating, and otherwise ensuring it is impervious to water infiltration or percolation, as needed • Sensitize the workers to appropriately manage construction materials and wastes • Use berms, silt traps or silt fences, pits or other measures to ensure that any runoff from the site is controlled</td>
</tr>
<tr>
<td>Medical Waste Management</td>
<td>Improper handling of medical waste could expose nearby communities or workers to infection</td>
<td>• Contractor to prepare a Medical Waste Management Plan for handling any items found during the works</td>
</tr>
<tr>
<td>Ventilation extraction</td>
<td>Emissions from infected areas through a natural filter system to allow for fresh air into and out of the spaces – windows that can be opened and closed to allow the building to “breathe”</td>
<td>• Windows to be opened and closed to allow for the extraction of “old” air from the wards which will allow for quicker cure and also will prevent the further spread of infection to staff who are delivering care. This recommendation is made bearing in mind the contagious nature of the virus. The faster the virus is eliminated from inside the structure, the more effective for health care and rehabilitation of the infected patients and the lesser the burden on the staff who provide the care i.e. doctors, nurses, ward aides et al. Air purifiers to be placed at strategic points around the building to reduce the infection rate.</td>
</tr>
</tbody>
</table>

Phase 2 - Operations

Once operational, facilities will have biomedical waste which will require safe storage, handling, transportation, and disposal. The health and safety of healthcare workers or the public could be affected by poor waste management practices. Operation of an autoclave or incinerator is also a source of risk if not properly done. Thermal injuries, or chemical burns could also arise in the context of disinfection, sterilization or waste treatment activities. Infection control procedures are also of critical importance during the operations phase.

Table 2 – Operations Mitigation Measures

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Potential Impacts</th>
<th>Proposed Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Health and Safety</td>
<td>Exposure of visitors</td>
<td>• Control and restrict access to the facility following COVID-19 protocol and guidance from the WHO for health facility, and the COVID-19 risk communication package for healthcare facilities • Implement the Infection and Prevention Control Protocol (IPCP) in the annexes of this ESMP</td>
</tr>
<tr>
<td>Aspect</td>
<td>Potential Impacts</td>
<td>Proposed Mitigation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Occupational Health and Safety | Injury to healthcare workers; Infection of healthcare workers | • Train staff on how to use PPE and ensure there is adequate supply
• Regularly monitor performance and conduct maintenance of equipment
• Train staff in infection control and SOPs for equipment
• Use the checklist tool from WHO “Risk assessment and management of exposure of healthcare workers in the context of COVID-19” for any instances where facility staff are exposed to a confirmed COVID-19 person
• Determine how illness among isolation facility staff will be managed in terms of required reporting, self-isolation, and workers compensation. Share this approach to all facility staff. |
| Medical Waste Management | Exposure of nearby communities; Exposure of workers | • Use procedures from the WHO, CDC, CARPHA, and national plans to properly classify, segregate, label, store, handle, and dispose of wastes
• Provide training on waste management and infectious disease management and surveillance programs |
| Air emissions from incinerator | Air pollution from inadequate incineration of waste | • Ensure the SOPs from the incinerator supplier are followed and that training is received from supplier
• Sensitize and train staff to adequately segregate, store, and transport the waste to the incinerator and/or autoclave
• Adequately budget for fuel for the incinerator and/or autoclave
• Provide appropriate breathing masks to incinerator operators and other staff that work near the incinerator
• Regularly monitor and maintain the incinerators to ensure they are working properly in accordance with SOPs |
| Air emissions from exhaust or filtration systems | Spread of airborne particles or aerosols | • Control airflow and provide filtration for intake/exhaust
• Manage air filters as medical waste
• Regularly monitor and maintain the filtration system to ensure they are working properly in accordance with SOPs
• Consider ultraviolet germ irradiation or other alternative disinfection systems |
| Hazardous liquid waste management | Spread of infection; Contamination of streams or groundwater | • Liquid wastes to be stored, neutralized, and disposed of so that it is not infectious
• Sensitize staff to avoid spillage of wastewater on the ground surface
• Sensitize staff and users of the facility to appropriately use the wastewater collection and disposal facilities |
| Non-hazardous liquid and solid waste | Unintended mixing of wastes, vector control, waste and debris accumulation | • Segregate liquid and solid wastes where possible
• Construct the septic tank and soak-pit according to the design specifications
• Construct a disinfecting septic tank containing a chlorine port to deal with grey water from the facility that is currently being drained into the open canals surrounding the facility
• Convert container on the site into a suitable storage area to house both solid and infectious waste.
• The latrines or septic tank and soak pit site should be regularly monitored and serviced to prevent problems or overflow
• Ensure that wastewater disposal is adequately budgeted for maintenance |
Phase 3 - Decommissioning

After the facility is finished operating as an isolation ward for COVID-19, the facility must be adequately sanitized, waste materials removed and disposed of, and supplies and equipment must be safely stored and maintained for future use.

Table 3 – Decommissioning Mitigation Measures

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Potential Impacts</th>
<th>Proposed Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site clean-up</td>
<td>Risk of infection from contaminated runoff, dust, or soil</td>
<td>• Incinerate or bury contaminated solid waste and dispose ash in approved sites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remove or seal and encapsulate any wastewater system elements</td>
</tr>
<tr>
<td>Contaminated Equipment</td>
<td>Risk of infection from contaminated equipment</td>
<td>• Provide appropriate PPE for staff for cleaning equipment used in all areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clean all equipment used following standards provided by WHO</td>
</tr>
</tbody>
</table>
Chapter 6. Project Management and Institutional Arrangements

6.1 ESMP Implementation Responsibilities

The overall responsibility for ensuring that the mitigation measures under this ESMP are implemented lies with the Product Coordinating Unit (PCU) and the Project Coordinator. The PCU will utilize the current framework (forms and templates) used by the PCU for the DVRP for management of environmental, social, health and safety requirements of the proposed works. The Social Safeguards Officer will also facilitate specific COVID-19 training to the contractor, consultant and related teams engaged for the works.

The Contractor would be required to have trained personnel as part of its team that are experienced in working within health facilities with ongoing operations. The Contractor will be responsible for the on-ground implementation and ensuring compliance with the contract clauses, recommendations, and mitigative measures detailed for management of ESHS risks. The Department of Economic Development, Transport and Civil Aviation will engage a consulting firm to provide support to the Ministry of Health and Wellness (MoHW) with supervision of the proposed works. The consulting firm will act as supervisor to document the contractor’s compliance with all work specifications and will report to the PCU. The consulting firm will engage the services of an expert for daily monitoring of compliance.

The Ministry of Health and Wellness (MoHW) will have the technical responsibility for implementation of the works. The PCU will provide support to the MoHW with respect to safeguards and monitoring and evaluation.

Monitoring will include weekly meetings to determine site changes, health, safety, social and environmental conditions, and the adequacy of the mitigative measures, and the overall ability of the contractor to execute the works as specified and in a sustainable manner.

6.2 Contractor Responsibilities

The general responsibilities of Contractors are described in the Contract and the EMF. Standard environmental and social related clauses were developed and are to be appended to or incorporated into the contracts and shall remain in force throughout the contract period, and are found in the general project EMF for the following aspects:

- Permits and Approvals
- Site Security
- Discovery of Antiquities (Chance Find Procedure)
- Worker Occupational Health and Safety
• Noise Control
• Use and Management of Hazardous Materials, fuels, solvents and petroleum products
• Use and Management of Pesticides
• Use of Preservatives and Paint Substances
• Site Stabilization and Erosion Control
• Traffic Management
• Management of Standing Water
• Management of Solid Wastes, trash and debris
• Management of Liquid Wastes
• Management of Medical Waste during construction

These generic clauses will be incorporated into all contracts, as applicable. In addition, specific project-related recommendations are included in Annexes 2 and 3 of this ESMP. These include:

• Infection Prevention and Control Protocol (IPCP)
• Environmental, Social, Health and Safety (ESH/S) Risks and Mitigation Measures for small civil works at healthcare facilities where COVID19 may be present

For purposes of cost estimation and budgeting, the contractors should be aware of the existence of the environmental mitigation measures and associated ESMP requirements and include cost items for such purposes in its proposals. The contractor should make provisions for ESHS management strategies and implementation plans as well as for ESHS reporting.

Reduced operations will continue at the site while the contractor executes the works. The Contractor’s personnel will include among others environmental and social health and safety personnel that would be responsible for monthly ESHS reporting. The Social Health and Safety Expert will provide periodic training to the Contractor’s team in relation to safety, accessing of work site, protocols to be followed for carrying out work in areas that may be close to the areas where patient services are offered.

6.3 Supervision, Monitoring and Reporting

Construction

It is ultimately the responsibility of the PCU to ensure that the ESMP is being followed by the contractor(s) and site workers.

During the construction phase, environmental and social monitoring will be carried out by the MoHW with support from the PCU Social Safeguards Officer. A Supervising Consultant will also be engaged to provide oversight on technical aspects and this should also include safeguards. In addition, the contactor is required to provide monthly ESHS reports to the Department of
Economic Development, Transport and Civil Aviation (DEDTCA). The Contractor is also responsible for ensuring that its personnel comply with the code of conduct and the approved protocols prescribed by the Department of Labour for health and safety.

The Consultant will submit monthly written progress reports to the PCU as well as provide weekly updates on all ESHS matters.

Operations

During operations, the following reporting will occur, in conformance with the Waste Management Act of 2004, draft 2006 Biomedical Waste Management Plan, WHO COVID-19 standards and Other Bio-Hazardous Wastes Management Plan:

- On-going Monitoring and Infraction Reporting
- Accident and Incident Reporting
- Follow-up Monitoring Activities

These may be updated as a result of the development of a National Healthcare Waste Management Strategy which is currently underway as part of another project.

Annex 4 of this ESMP includes the template from the Plan for incident reporting.
Chapter 7. Stakeholder Engagement

7.1 Disclosure of ESMP

The ESMP will be disclosed on the GoSL website on http://www.govt.lc/.

A printed copy of this ESMP will be available at the offices of the Ministry of Health and Wellness and the Project Coordination Unit, DEDTCA.

.2 Community Engagement

The works, in particular the external works, would require community engagement. For works ongoing within the building there is need to ensure that adequate means are utilized to disseminate the information.

Public gatherings is a common approach to stakeholder consultation. However, where there is a disease outbreak this approach to stakeholder engagement will need to change. There are numerous alternatives that may be used. However, the key criteria for stakeholder engagement remains the same, and that is meaningful dialogue with project affected people with attention given to the most vulnerable. The method used for stakeholder consultation must allow for feedback and suggestions to be provided by stakeholders.

Recommended approaches for community engagement during a COVID-19 outbreak are listed below.

- Avoid public gatherings (taking into account national restrictions), including public hearings, workshops and community meetings;
- If smaller meetings are permitted, conduct consultations in small-group sessions of no more than 10 people, such as focus group meetings held in an outside area with chairs placed 6 feet apart;
- If in person meetings are not permitted, make efforts to conduct meetings through online channels, including Webex, Zoom, Microsoft Teams and Skype;
- Try social media and online channels to share activity information. The DVRP has a Facebook Page which should be used to allow for such exchanges. Where possible and appropriate, create dedicated online platforms and chat groups appropriate for the purpose;
• Employ traditional channels of communications (TV, newspaper, radio, dedicated phone-lines, and mail) if a stakeholder does not have access to online channels or does not use them frequently;

• Where direct engagement with project affected people or beneficiaries is necessary, identify channels for direct communication with each affected household via a combination of email messages, mail, online platforms, dedicated phone lines with knowledgeable operators, or direct calling by the project team.

Communication and engagement activities under this CERC will also follow the publication from the WHO “Risk Communication and Community Engagement (RCCE) readiness and response to the 2019 novel coronavirus (2019-nCoV)” which will guide messaging about the COVID-19 preparedness and response measures under the CERC and gives broader guidance and checklists for national level communication during different phases of a disease outbreak.

7.3 Grievance and Redress Mechanism

The Grievance Mechanism for the Victoria Hospital rehabilitation project will be the same as that used for the DVRP. This was described in the EMF and is summarized below.

| Grievance Log | • Grievances can be made verbally to the PCU and accurately documented and verified as a true account by a third party.
• Grievances can be made in writing, addressed to the PCU and copied to the relevant authority as defined in the Land Acquisition Act.
• All grievance must be signed and dated by the aggrieved persons. |
| Assessment | • The grievances should be categorized by type.
• The first assessment of the grievance will be conducted by a Grievance Committee comprising persons drawn from the PCU and technical officers from other relevant ministries
• A letter acknowledging the grievance is issued by the PCU to the aggrieved persons within 5 days of receipt of the grievance
• The Social Transformation Officer will provide assistance with dealing with conflict resolution and grievance. |
• Should a dispute arise, the applicable Laws of Saint Lucia will prevail.

| Resolution and Follow-up | • An Implementation Plan should be developed for the resolution of grievances, and the data shared with the World Bank.
• On-the-spot resolution should be encouraged. However, the process and results should be documented. |

| Appeal Process | • If the aggrieved person is not satisfied with the outcome, he/she can appeal, and refer the matter to the court of law for redress |

Anyone with a grievance should contact the Social Safeguards Officer, Deborah Hippolyte at 468-5582 /285-7245 or via email at Deborah.hippolyte@govt.lc. This information is shared with the Project Affected Persons (PAPs) and at all community consultations/engagements.

Relevant points to underscore in the context of the Victoria Hospital rehabilitation project include:

• Information about the Project level Grievance Redress Mechanism within the PCU will be provided to the community and users of the facility via notice boards at the facility, DVRP Facebook page, Department of Health and Wellness notice board and on printed material as required.

• The contact details for complaints under the project are as follows:

 a. Physical address for sending a letter, or coming in person
 Project Coordination Unit
 Department of Economic Development, Transport and Civil Aviation
 2nd floor Finance Administrative Centre
 Pointe Seraphine
 Castries
 Saint Lucia

 b. Phone number(s)- can receive text message complaints.
 1-758-285-7245

 c. Email address that is checked frequently.
 Deborah.hippolyte@govt.lc
Error! Reference source not found. below identifies potential impacts of the proposed activities envisioned under CERC activities. Many of the actions or activities have low or negligible potential negative impacts, such as purchase of equipment or supplies. Some may have impacts that are typical for small construction or rehabilitation projects, such as repairs to damaged infrastructure, buildings, or clinics. Others, particularly those dealing with management of infectious disease control such as COVID-19, may have moderate to substantial risk.

The form below is highlighted for the rehabilitation of the Victoria Hospital, and identifies the potential environmental and social risk levels for the works as Moderate to Substantial. Therefore, the results of this screening indicate that an ESMP needs to be prepared for the subproject, using the tools in the general EMF for the DVRP along with the additional safety guidance and information provided in the CERC-ESMF.
<table>
<thead>
<tr>
<th>Subproject Name</th>
<th>Victoria Hospital rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subproject Location</td>
<td>Castries, St Lucia</td>
</tr>
<tr>
<td>Subproject Proponent</td>
<td>PCU, MOHW</td>
</tr>
<tr>
<td>Estimated Investment</td>
<td></td>
</tr>
<tr>
<td>Start/Completion Date</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subprojects / Activities</th>
<th>Potential E&S Risks or Impacts</th>
<th>E&S Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purchase of medical equipment and supplies</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Repair of damaged infrastructure including, but not limited to: water supply and sanitation systems, dams, reservoirs, canals, roads, bridges and transportation systems, energy and power supply, telecommunication, and other infrastructure damaged by the event</td>
<td>Increased dust, noise, water pollution, solid/hazardous/toxic wastes, waste oil/fuels, public health and safety; possible use of asbestos-contaminated as construction materials and land acquisition; and impacts on ethnic and vulnerable groups.</td>
</tr>
<tr>
<td>3</td>
<td>Re-establish of the urban and rural solid waste system, water supply and sanitation (including desilting and drainage)</td>
<td>Same as (2) above</td>
</tr>
<tr>
<td>4</td>
<td>Repair of damaged public buildings, including schools, hospitals and administrative buildings</td>
<td>Same as (2) above</td>
</tr>
<tr>
<td>5</td>
<td>Repair, restoration, rehabilitation, retrofit of schools, offices, warehouses</td>
<td>Same as (2) above</td>
</tr>
<tr>
<td></td>
<td>Rehabilitation of hospital wards, establishing isolation and quarantine facilities</td>
<td>Spread of infectious disease, community information and concerns, occupational health and safety</td>
</tr>
<tr>
<td>7</td>
<td>Removal and disposal of debris associated with any eligible activity</td>
<td>Improper waste management and disposal of infectious waste</td>
</tr>
<tr>
<td>8</td>
<td>Disposal of medical wastes (at camp site, small clinic/hospitals), asbestos-based materials, other toxic/hazardous wastes</td>
<td>Increase health risks, need management of medical waste, toxic materials, asbestos-contaminated debris</td>
</tr>
<tr>
<td>9</td>
<td>Temporary toilets for emergency facilities</td>
<td>Improper hygiene or waste management and disposal</td>
</tr>
</tbody>
</table>
Annex 2. Infection and Prevention Control Protocol (IPCP)

The following information was adapted from the CDC Interim Infection Prevention and Control Recommendations for patients with confirmed COVID-19 or persons under investigation for COVID-19 in Healthcare Settings. The original reference should be consulted for any updates.

DURING CONSTRUCTION

1. Minimize Chance of Exposure
 - Any worker showing symptoms of respiratory illness (fever + cold or cough) and has potentially been exposed to COVID-19 should be immediately removed from the site and tested for the virus at the nearest local hospital
 - Close co-workers and those sharing accommodations with such a worker should also be removed from the site and tested
 - Project management must identify the closest hospital that has testing facilities in place, refer workers, and pay for the test if it is not free
 - Persons under investigation for COVID-19 should not return to work at the project site until cleared by test results. During this time, they should continue to be paid daily wages
 - If a worker is found to have COVID-19, wages should continue to be paid during the worker’s convalescence (whether at home or in a hospital)
 - If project workers live at home, any worker with a family member who has a confirmed or suspected case of COVID-19 should be quarantined from the project site for 14 days, and continued to be paid daily wages, even if they have no symptoms.

2. Training of Staff and Precautions
 - Train all staff in the signs and symptoms of COVID-19, how it is spread, how to protect themselves and the need to be tested if they have symptoms. Allow Q&A and dispel any myths.
 - Use existing grievance procedures to encourage reporting of co-workers if they show outward symptoms, such as ongoing and severe coughing with fever, and do not voluntarily submit to testing
 - Supply face masks and other relevant PPE to all project workers at the entrance to the project site. Any persons with signs of respiratory illness that is not accompanied by fever should be mandated to wear a face mask
 - Provide handwash facilities, hand soap, alcohol-based hand sanitizer and mandate their use on entry and exit of the project site and during breaks, via the use of simple signs with images in local languages
 - Train all workers in respiratory hygiene, cough etiquette and hand hygiene using demonstrations and participatory methods
 - Train cleaning staff in effective cleaning procedures and disposal of rubbish

3. Managing Access and Spread
 - Should a case of COVID-19 be confirmed in a worker on the project site, visitors should be restricted from the site and worker groups should be isolated from each other as much as possible;
• Extensive cleaning procedures with high-alcohol content cleaners should be undertaken in the area of the site where the worker was present, prior to any further work being undertaken in that area.

DURING OPERATIONS

1. Minimize Chance of Exposure (to staff, other patients and visitors)
 • Upon arrival, make sure patients with symptoms of any respiratory infection are taken to a separate, isolated and well-ventilated section of the healthcare facility to wait, and issue a facemask
 • During the visit, make sure all patients adhere to respiratory hygiene, cough etiquette, hand hygiene and isolation procedures. Provide oral instructions on registration and ongoing reminders with the use of simple signs with images in local languages
 • Provide alcohol-based hand sanitizer (60-95% alcohol), tissues and facemasks in waiting rooms and patient rooms
 • Isolate patients as much as possible. If separate rooms are not available, separate all patients by curtains. Only place together in the same room patients who are all definitively infected with COVID-19. No other patients can be placed in the same room.

2. Adhere to Standard Precautions
 • Train all staff and volunteers to undertake standard precautions - assume everyone is potentially infected and behave accordingly
 • Minimize contact between patients and other persons in the facility: healthcare professionals should be the only persons having contact with patients and this should be restricted to essential personnel only
 • A decision to stop isolation precautions should be made on a case-by-case basis, in conjunction with local health authorities.

3. Training of Personnel
 • Train all staff and volunteers in the symptoms of COVID-19, how it is spread and how to protect themselves. Train on correct use and disposal of personal protective equipment (PPE), including gloves, gowns, facemasks, eye protection and respirators (if available) and check that they understand
 • Train cleaning staff on most effective process for cleaning the facility: use a high-alcohol based cleaner to wipe down all surfaces; wash instruments with soap and water and then wipe down with high-alcohol based cleaner; dispose of rubbish by burning etc.

4. Manage Visitor Access and Movement
 • Establish procedures for managing, monitoring, and training visitors
 • All visitors must follow respiratory hygiene precautions while in the common areas of the facility, otherwise they should be removed
 • Restrict visitors from entering rooms of known or suspected cases of COVID-19 patients
 • Alternative communications should be encouraged, for example by use of mobile phones. Exceptions only for end-of-life situation and children requiring emotional care. At these times, PPE should be used by visitors.
 • All visitors should be scheduled and controlled, and once inside the facility, instructed to limit their movement.
• Visitors should be asked to watch out for symptoms and report signs of acute illness for at least 14 days.
Annex 3. Health and Safety Guidelines for Retrofitting/Rehabilitation of Medical Facilities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Risks and Impacts</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design activity – hospitals, clinics</td>
<td>The focus on treatment and care is progressed disproportionately with the need for adequate medical waste infrastructure.</td>
<td>Ensure that the designs for medical facilities also consider the collection, segregation and treatment of medical waste. The treatment of healthcare wastes produced during the care of COVID-19 patients should be collected safely in designated containers and bags, treated and then safely disposed. Open burning and incineration of medical wastes can result in emission of dioxins, furans and particulate matter, and result in unacceptable cancer risks under medium (two hours per week) or higher usage. If small-scale incinerators are the only option available, the best practices possible should be used, to minimize operational impacts on the environment. Best practices in this context are: ✓ effective waste reduction and segregation, ensuring only the smallest quantities of combustible waste types are incinerated; ✓ an engineered design with sufficient residence time and temperatures to minimize products of incomplete combustion; ✓ siting incinerators away from healthcare buildings and residential areas or where food is grown; ✓ construction using detailed engineering plans and materials to minimize flaws that may lead to incomplete destruction of waste and premature failures of the incinerator; ✓ a clearly described method of operation to achieve the desired combustion conditions and emissions; for example, appropriate start-up and cool-down procedures, achievement and maintenance of a minimum temperature before waste is burned, use of appropriate loading/charging rates (both fuel and waste) to maintain appropriate temperatures, proper disposal of ash and equipment to safeguard workers; ✓ periodic maintenance to replace or repair defective components (including inspection, spare parts inventory and daily record keeping); and ✓ improved training and management, possibly promoted by certification and inspection programs for operators, the availability of an operating and maintenance manual, visible management oversight, and regular maintenance schedules.</td>
</tr>
</tbody>
</table>

Apply safeguards to implementation of projects. |
|---|---|---|
| Design and operation of facilities, including triage, isolation(or quarantine) facilities | The design of the facility and the operating procedures will help prevent spread of infection | For patients with possible or confirmed COVID-19, isolation rooms should be provided and used at medical facilities. Isolation rooms should:
✓ be single rooms with attached bathrooms (or with a dedicated commode);
✓ ideally be under negative pressure (neutral pressure may be used, but positive pressure rooms should be avoided);
✓ be sited away from busy areas (areas used by many people) or closed to vulnerable or high-risk patients, to minimize chances of infection spread;
✓ have dedicated equipment (for example blood pressure machine, peak flow meter and stethoscope), but should avoid excess equipment or soft furnishings;
✓ have signs on doors to control entry to the room, with the door kept closed;
✓ have an ante-room for staff to put on and take off PPE and to wash/decontaminate before and after providing treatment.
An operation manual should be prepared prior to the opening of isolation rooms to describe the working procedures to be taken by healthcare workers to protect themselves and prevent infection escape while providing treatment. The operational procedures should be of a standard to meet guidance from WHO and/or CDC on infection control: |
<table>
<thead>
<tr>
<th>Improve access to support and treatment for disadvantaged vulnerable groups</th>
<th>Some vulnerable groups (especially the elderly or those with pre-existing medical conditions) may be severely affected by COVID-19 and may need additional support to access treatment.</th>
<th>Projects should develop and commit to specific actions to ensure disadvantaged and vulnerable groups have effective treatment, whether in medical facilities or in the community. Similarly, where IP communities are involved, need to follow ESS7 and IPF policy Para 12 on emergency provision.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment of workers</td>
<td>Workers do not receive the care needed if infected with COVID-19.</td>
<td>Contractors should ensure that contracted workers have medical insurance, covering treatment of COVID-19.</td>
</tr>
</tbody>
</table>
| **Transient and expat workforce** | Workers that are mobilized from abroad or returning from abroad become vectors for transmission of disease to construction projects. Workers | Expats or transient workers should adhere to national requirements and guidelines with respect to COVID-19. Expats or transient workers coming from countries/regions with cases of the virus:
 • Should not return if displaying symptoms
 • Should self-isolate for 14 days following their return
 For self-isolation, workers should be provided with a single room that is well-ventilated (i.e., with open windows and an open door). If a single room is not available for each worker, adequate space should be provided to maintain a distance of at least 1 m between workers. |
that travel from other regions may also provide a vector for passing infection onto work sites.

| Labor camps | Closed working and living conditions of workforce may create conditions for the easy transmission of COVID-19 and the infection of large numbers of people. | sharing a room. Workers in isolation should limit their movements in shared space, for example through timed use of shared spaces (such as kitchens and bathrooms) with cleaning prior to and after use of the facilities. Visitors should not be allowed until the worker has shown no signs and symptoms for 14 days, and the number of staff involved in caring for those in isolation should be kept to a minimum. Healthcare professionals and cleaners should visit each day (wearing the appropriate PPE and observing hygiene requirements and make appropriate arrangements for supplying food and water to the kitchens for the workers in isolation. Further information is provided by WHO in *Home care for patients with suspected novel coronavirus (COVID-19)*. |

| Develop contingency plans with arrangements for accommodation, care and treatment for:
 - Workers self-isolating
 - Workers displaying symptoms
 - Getting adequate supplies of water, food and supplies |

Contingency plans also should consider arrangements for the storage and disposal arrangements for medical waste, which may increase in volume and which can remain infectious for several days (depending upon the material). Ensure medical facilities are stocked with adequate supplies of medical PPE, as a minimum:

- Gowns, aprons
- Medical masks and some respirators (N95 or FFP2)
- Gloves (medical, and heavy duty for cleaners)
- Eye protection (goggles or face screens)

Medical staff at the facilities should be trained and be kept up to date on WHO advice and recommendations on the specifics of COVID19. The medical staff/management should run awareness campaigns and posters on site advising workers:

- how to avoid disease spread (cough/sneeze in crook of elbow; keep 1m or more away, sneeze/cough in tissue and immediately through tissue away, avoid spitting, observe good hygiene)
- the need to regularly wash hands with soap and water – many times per day
- to self-isolate if they think they may have come in contact with the virus
- to self-isolate if they start to display any symptoms, but alert and seek medical advice
| Wash stations should be provided regularly throughout site, with a supply of clean water, liquid soap and paper towels (for hand drying), with a waste bin (for used paper towels) that is regularly emptied. Wash stations should be provided wherever there is a toilet, canteen/food and drinking water, or sleeping accommodation, at waste stations, at stores and at communal facilities. Where wash stations cannot be provided (for example at remote locations), alcohol-based hand rub should be provided. Enhanced cleaning arrangements should be put in place, to include regular and deep cleaning using disinfectant of catering facilities/canteens/food/drink facilities, latrines/toilets/showers, communal areas, including door handles, floors and all surfaces that are touched regularly (ensure cleaning staff have adequate PPE when cleaning consultation rooms and facilities used to treat infected patients). Worker accommodation that meets or exceeds IFC/EBRD worker accommodation requirements (e.g. in terms of floor type, proximity/no of workers, no ‘hot bedding’, drinking water, washing, bathroom facilities etc.) will be in good state for keeping clean and hygienic, and for cleaning to minimize spread of infection. To minimize pressure on PPE resources: WHO advice on the effectiveness and use of PPE by general public should be followed to ensure that the supplies are not exhausted through ineffective use – this is equally important on construction sites. Other measures (such as working water sprinkling systems at crushers and stock piles, covered wagons, water suppression or surfacing of haul roads etc.) should be used for dust suppression on site before relying upon the use of dust masks (which could unnecessarily reduce the availability of N95/FFP2 masks for use by medical staff performing some duties).

References and sources of further information

Annex 4. Accident/Incident Reporting Form

<table>
<thead>
<tr>
<th>Accident/Incident Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and time of Incident:</td>
</tr>
<tr>
<td>Name of Person(s) Involved:</td>
</tr>
<tr>
<td>Check One:</td>
</tr>
<tr>
<td>Employee ()</td>
</tr>
<tr>
<td>Visitor ()</td>
</tr>
<tr>
<td>Facility</td>
</tr>
<tr>
<td>Immediate Supervisor:</td>
</tr>
<tr>
<td>Supervisor's Phone Number:</td>
</tr>
<tr>
<td>Location of Incident:</td>
</tr>
<tr>
<td>List operating personnel and witnesses:</td>
</tr>
<tr>
<td>Describe the nature of the accident/incident (Please attach additional paper if necessary):</td>
</tr>
<tr>
<td>Describe the task the employee was performing (or intended to perform):</td>
</tr>
<tr>
<td>Describe how the accident/incident occurred (include sequence of events and extent of damage):</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Was task specific training conducted, including the communication of</td>
</tr>
<tr>
<td>all safety procedures provided, prior to job assignment?</td>
</tr>
<tr>
<td>Was there a source (object or substance) or pre-existing hazardous</td>
</tr>
<tr>
<td>condition responsible for the accident/incident? (Identify source and</td>
</tr>
<tr>
<td>explain)</td>
</tr>
<tr>
<td>Was personal protective equipment required for the task? If so, please</td>
</tr>
<tr>
<td>list what personal protective equipment was required for the job.</td>
</tr>
<tr>
<td>Was the required personal protective equipment worn during the task?</td>
</tr>
<tr>
<td>What corrective action(s) has/have been or will be taken to prevent a</td>
</tr>
<tr>
<td>similar occurrence from occurring in the future?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of Proposed Corrective Action Implementation:</th>
<th>Date Corrective Action Completed:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Investigated By:</th>
<th>Date:</th>
<th>Reviewed By:</th>
<th>Date:</th>
</tr>
</thead>
</table>